Matematika

Matematika fanidan to'garak

Nosirova Shahnoza

«Qiziqarli matematika»

To’garak kunlari: Dushanba
Vaqti: 13:00 dan 15:00 gacha
Joyi: 5-A sinf xonasi

Niyozova Latofat

«Yosh matematiklar»

To’garak kunlari: Dushanba
Vaqti: 14:00 dan 15:00 gacha

Sinflar:7-10
Joyi: 11-B  sinf xonasi

Bozorova Maryam

«Qiziqarli matematika»

To’garak kunlari: Dushanba
Vaqti: 14:00 dan 15:00 gacha

Sinfi:5-11
Joyi: 11-A sinf xonasi

Eshtuxtarova Saodat

«Matematik savodxonlik»

To’garak kunlari: Dushanba

Sinflar: 7-8
Vaqti: 14:00 dan 15:00 gacha

Joyi: 8-B sinf xonasi

Djalilova Fazolat

«Yosh matematiklar»

To’garak kunlari: Dushanba

Sinflar: 5
Vaqti: 14:00 dan 15:00 gacha

Joyi: 5-G sinf xonasi

Matematika (yun. thematike, mathema — bilim, fan), Riyoziyot[1] — aniq mantiqiy mushohadalarga asoslangan bilimlar haqidagi fan. Dastlabki obʼyekti sanoq boʻlgani uchun koʻpincha unga "hisob-kitob haqidagi fan" deb qaralgan’ (bugungi matematikada hisoblashlar, hatto formulalar ustidagi amallar juda kichik oʻrin egallaydi). Matematika eng qadimiy fan sohasi boʻlib, uzoq rivojlanish tarixini bosib oʻtgan va buning barobarida "matematika nima?" degan savolga javob ham oʻzgarib, chuqurlashib borgan. Yunonistonda matematika deganda geometriya tushunilgan. 9—13-asrlarda matematika tushunchasini algebra va trigonometriya va  kengaytirgan. 17—18-asrlarda matematikada analitik geometriyadifferensial va integral hisob asosiy oʻrinni egallaganidan soʻng, to 20-asr boshlarigacha u "miqdoriy munosabatlar va fazoviy shakllar haqidagi fan" mazmunida taʼriflangan. 19-asr oxiri va 20-asr boshlarida turli geometriyalar (Lobachevskiy geometriyasiproyektiv geometriyaRiman geometriyasi kabi), algebralar (Bul algebrasikvaternionlar algebrasiKeli algebrasi kabi), cheksiz oʻlchovli fazolar kabi mazmunan juda xilma-xil, koʻpincha sunʼiy tabiatli obʼyektlar oʻrganila boshlanishi bilan matematikaning yuqoridagi taʼrifi oʻta tor boʻlib qolgan. Bu davrda matematik mantiq va toʻplamlar nazariyasi asosida oʻziga xos mushohada uslubi hamda tili shakllanishi natijasida matematikada eng asosiy xususiyat — qatʼiy mantiqiy mushohada, degan gʻoya vujudga keldi (J. Peano, G. Frege, B. RasselD. Xilbert). 20-asr oʻrtalarida Burbaki taxallusi ostida matematika taʼrifini qayta koʻrib chiqqan bir guruh fransuz matematiklari bu gʻoyani rivojlantirib, "Matematika — matematik strukturalar haqidagi fan" degan taʼrif kiritdi. Bu yondashuv avvalgi taʼriflarga koʻra kengroq va aniqroq boʻlsada, baribir cheklangan edi — strukturalar oʻrtasidagi munosabatlar (masalan, matematika, turkumlar nazariyasi, algebraik topologiya), amaliy hamda tatbiqiy nazariyalar, xususan, fizikatexnika va ijtimoiy fanlarda matematik modellar bu taʼrif doirasiga sigʻavermas edi. Soʻnggi asrda xilma-xil matematik obʼyektlar orasida juda chuqur munosabatlar mavjudligi va aynan shunga asoslangan natijalar M.ning bundan buyongi taraqqiyotida asosiy oʻrinni egallashini koʻrsatmoqda. Elektron hisoblash vositalari bilan birga M. tatbiqlarining kengayishi (biometriya, sotsiometriya, ekonometrika, psixometriya va boshqalar), matematik usullar hayotining turli sohalariga jadal surʼatlar bilan kirib borayotgani ham M. predmetini ixcham taʼrif bilan qamrab boʻlmaydigan darajada kengaytirib yubordi. Demak, M. aksiomatik nazariyalar va matematik modellarni, ular orasidagi munosabatlarni oʻrganadigan, xulosalari qatʼiy mantiqiy mushohadalar orqali asoslanadigan fandir. Dastlab oddiy sanoq sonlar va ular ustidagi arifmetik amallardan boshlangan tematik bilimlar umuminsoniy taraqqiyot bilan birga kengayib va chuqurlashib borgan. Eng qad. yozma manbalardayoq (mas, matematik papiruslar) kayerlar ustida amallar va chiziqli tenglamalarni yechishga doyr misollar uchraydi. Sugʻorma dehqonchilik, meʼmorlikning rivojlanishi, astro-nomik kuzatuvlarning ahamiyati ortishi geometriyaga oid dalillar jamgʻarilishiga olib kelgan. Mas, Qad. Misrda tomonlari 3, 4 va 5 birlik boʻlgan uchburchak toʻgʻri burchakli bulishidan foydalanilgan. Bu davr M.sining oliy yutuqlarini muntazam toʻrtburchakli kesik piramida hajmini hisoblash qoidasi (hozirgi yozuvda V— (a2 + ab + b2) L/3 formulaga mos keladi) va l= (16/9)2 taqribiy qiymatini misollarida koʻrish mumkin. Yunonistonda geometrik xossalar faqat kuzatuv va tajriba yoʻli bilangina topilmay, avvaldan maʼlum xossalardan keltirib chiqarilishi mumkinligi ham payqalgan hamda deduktiv isbot gʻoyasi rivojlantirilgan (Fales, Pifagor va boshqalar). Bu gʻoyaning choʻqqisi Evklidning "Negizlar" asarida geo-metriyaning aksiomatik qurilishi boʻldi. Bu kitob M.ning keyingi rivojiga katta taʼsir qildi va 19-asr boshlarigacha mantiqiy bayonning mukammalligi boʻyicha namuna boʻlib keldi. Yunonlar M.ni geometriya bilan tenglashtirib, sanʼat darajasiga koʻtarganlar. Buning natijasida planimetriya va stereometriya ancha mukammal darajaga yetgan. Faqat 5 xil qavariq muntazam kupyoqlikning mavjudligi (Platon), kvadratning tomoni bilan diagonali umumiy oʻlchovga ega emasligi (Pifagor), nisbatlar nazariyasiga asoslangan son tushunchasi (Evdoks), qamrash usuli bilan egri chiziqli shakllar yuzi va yey uzunligini, jismlar hajmini hisoblash, Geron formulasi, konus kesimlari (Apolloniy, Pergayos), sterografik proyeksiya (Ptolemey), geometrik yasashlar va shu munosabat bilan turli egri chiziqlarning oʻrganilishi yunon geometriyasining taraqqiyot darajasi haqida tasavvur beradi. Yunon olimlari qoʻygan burchak triseksiyasi, kubni ikkilash, doyra kvadraturasi, muntazam koʻpburchak yasash masalalari 19-asrga kelib oʻz yechimini topdi, mukammal va "doʻst" sonlar haqidagi muammolar esa hamon ochikligicha qolmoqda. Ayniqsa, Arximed tadqiqotlarida yunon M.si oʻz davridan juda ilgarilab ketgan — u integral hisob, ogʻirlik markazi gʻoyalarini qoʻllagan. Yunon olimlari trigonometriyaga oid dastlabki maʼlumotlarga ham ega boʻlganlar (Gipparx, Ptolemey), Diofantning "Arifmetika" asarida sonlar nazariyasiga oid masalalar qaralgan.